
OtoCo
Smart Contract Audit

OtoCo

Smart Contract Audit
V220527 Prepared for OtoCo Labs Ltd. • May 2022

1. Executive Summary

2. Assessment and Scope

3. Summary of Findings

4. Detailed Findings

OGO-9 Integer overflow in function createBatchSeries

OGO-10 Improper initialization of cloned contract

OGO-11 Shadowing of state variables

OGO-12 Lack of parameter validation at createBatchSeries

OGO-13 Jurisdiction number causes high gas usage

OGO-14 Inconsistent documentation

OGO-15 Lack of mapping length validations in function createBatchSeries

5. Disclaimer

© 2022 Coinspect 1

1. Executive Summary

In May 2022, OtoCo Labs engaged Coinspect to perform a source code review of
OtoCo Smart Contracts. The objective of the project was to evaluate the security of
the smart contracts.

The following issues were identified during the initial assessment:

High Risk Medium Risk Low Risk

1 1 3
Fixed

1
Fixed

1
Fixed

3

The findings include one high risk issue and one low risk issue related to the
maximum amount of possible jurisdictions. Also a medium risk issue was identified
that could allow attackers to take over the OtocoToken contract by front-running
the initialization process.

© 2022 Coinspect 2

https://www.coinspect.com

2. Assessment and Scope

The audit started on May 2021 and was conducted on the nft-refactoring branch of
the git repository at https://github.com/otoco-io/SmartContract as of commit
0833c1b4002c09355fcca40ba06ccd3ce0694592 of May 13 2022.
The audited files have the following sha256sum hash:

0a60c97a85ce4cf90f7ef3ceb7de1644bc12382f55cd1af5e65043ca37cc78a3 OtoCoPlugin.sol

fb9032e65270f8d298af344f3322bf956694b8df8562ab9794e54a8f73b828c6 utils/IOtoCoMaster.sol

d3ceca6e39aa107299868cfea2fc3c73004793743f0c731fa919dea4a3d974f1

utils/IOtoCoJurisdiction.sol

1bf18baa63be81faa3ae7002b925bf516458470b269acf0710c46886b843e93e utils/OtoCoToken.sol

f67245e5f56644ad07e468aea76d729087caf22d4a06653016d228859c1438ea utils/IOtoCoPlugin.sol

79825920dc35aef8995814b253ff150bd63f4d1a505d74dafab9c5c2495a7579 plugins/ENS.sol

e2268c49d371e99b2924fb156a1241912dfffe646011a503fdc3f6b6f0544bb1 plugins/Token.sol

999df07013b33114fde2e6148ec76ccac9b244da3d7f3c88309caa1109036242 plugins/Timestamp.sol

210502743188f318884328b42bbb35b76a2aa57e3755109a5ebd79e9dd860146 plugins/Multisig.sol

fee1888f27a8425c0ee04b99aa2980707f65ee2020d19e75fc778788713a9ca5 plugins/Launchpool.sol

7a530ac6dbe1e09bc0950a30bea6e9d8d029affdbbd673390ef1d5e20803cb5e OtoCoMaster.sol

9f8d8f4f9d975c608366e245bd30f5662de957b0a9c29c07658eceb17bc5d97b OtoCoJurisdiction.sol

0456899ec4b2b103ea39decd2d9577240e49574f2456482d9e42c74c1eacb7de

jurisdictions/Delaware.sol

4ea17c38a8af01f0da109210162a6ff2b42057591edf28b93ddbea6dda088fb5

jurisdictions/Unincorporated.sol

ea3fcff85d05f00a3785eb02e0b5f75896fc311478a2d927267af23532db8fb4 jurisdictions/Wyoming.sol

Description

OtoCo is an automated company assembly capable of quickly setting up LLCs on
the Ethereum blockchain. For this, it utilizes a legal LLC variant called Series LLCs.

A Series LLC depends on a Master LLC. The OtoCo contracts represent an individual
Series LLC by minting a NFT for each Series. Because different jurisdictions can
have different rules like specific naming conventions, etc, different contracts exist to
represent different legal jurisdictions. While there are only three jurisdictions
currently implemented in the code, the code allows for up to 65535 jurisdictions.
Also, jurisdictions can be added but never removed from the contracts, and this
might cause some issues (see OGO-013).

A plug-in mechanism is implemented to add optional features to Series, like ENS
services, multisigs and a private token. The plugins are implemented as contracts
that can be associated to series in exchange of a fee.

© 2022 Coinspect 3

https://github.com/otoco-io/SmartContract

Centralization

The main contract OtoCoMaster is upgradeable and ownable.
The OtoCoToken implements the token that can be assigned to Series, but this
token is not ownable, nor upgradeable.

Roles

The owner of the master contract OtoCoMaster is capable of creating Series
individually and in batch, adding Jurisdictions, Modifying fees, and withdrawing all
fees. The series Owner role is the address that owns the NFT representing the
series, it can perform operations like attaching and adding plugins to a series, and
also can close the series.

Description of findings

Coinspect found that if the number of jurisdictions surpasses 255, the OtoCoMaster

contract can no longer mint series in batch mode and always causes a revert of the
transaction (OGO-9).

The OtoCoToken contract can be taken over by an attacker by front-running the
initialization process (OGO-10). The impact of this issue was diminished as medium
risk, because the OtoCoToken contract is only created via the Token plugin contract
that always initializes the contract after cloning it.

Regarding low risk issues, it was found that some variables declared in the
OtoCoToken contract shadow variables in the parent ERC20 contract. This causes
different variables to be used in the parent and inherited contract (OGO-11).

Another low risk issue was found where the contract owner can batch mint series
with a timestamp in the past or the future (OGO-12). Also, the function
createBatchSeries() in the OtoCoMastercontract iterates over all the
jurisdictions, and if the number of jurisdictions is high the cost of transactions can be
rendered prohibitive (OGO-13).

© 2022 Coinspect 4

Some informative issues are also reported, concerning documentation and
validations, that do not represent security problems (OGO-14, OGO-15)

Finally, we found the included tests to have a reasonable coverage of the contracts
code and functionality.

© 2022 Coinspect 5

3. Summary of Findings

Id Title Total Risk Fixed

OGO-9 Integer overflow in function
createBatchSeries

High ✔

OGO-10 Improper initialization of cloned contract Medium ✔

OGO-11 Shadowing of state variables Low ✔

OGO-12 Lack of parameter validation at
createBatchSeries

Low ✔

OGO-13 Jurisdiction number causes high gas usage Low ✔

OGO-14 Inconsistent documentation Info ✔

OGO-15 Lack of mapping length validations in
function createBatchSeries

Info ✔

© 2022 Coinspect 6

4. Detailed Findings

OGO-9 Integer overflow in function createBatchSeries

Total Risk

High

Impact
High

Location
OtoCoMaster.sol:138

Fixed
✔

Likelihood
High

Description

The function createBatchSeries() mints a batch of series and adds them to specific
state variable counters. When adding the amount of series per jurisdiction, this code is
executed:

for (uint8 i = 0; i < jurisdictionCount; i++){
seriesPerJurisdiction[i] = seriesPerJurisdiction[i]+seriesPerJurisdictionTemp[i]

However, jurisdictionCount is defined as:

// Total count of unique jurisdictions
uint16 public jurisdictionCount;

As the loop is comparing the variable i as uint8 with jurisdictionCount as uint16,
the transaction reverts if jurisdictionCount is over 255, as this will cause an integer
overflow in the counter variable i.
Additionally, as jurisdictions can only be added and not removed from the contract, if
the number of jurisdictions in the contract surpasses 255 the createBatchSeries()

function will always revert.

Recommendation

Declare the variable i as uint16.

Status

Fixed at commit d71f7789c4fe04e890dd0724d9ecfa0d9e6790ea.

© 2022 Coinspect 7

OGO-10 Improper initialization of cloned contract

Total Risk

Medium

Impact
Medium

Location
OtoCoToken.sol:6
Token.sol:75

Fixed
✔

Likelihood
Medium

Description

The Token contract is a OtoCoPlugin that assigns a clone of OtoCoToken to a series.

We can see in this declaration:

function initialize (string memory name_, string memory symbol_, uint256 supply_,
address member_) public NotInitialized {

Attackers can call the function initialize and take over the OtoCoToken contract.
While this do not affect clones of this contract, the initializer should be disabled in the
base contract using the _disableInitializers() function in the constructor to
automatically lock it when it is deployed:

constructor() {
_disableInitializers();

}

Recommendation

OtoCoToken should implement the initializable pattern, inheriting from OpenZeppelin’s
Initializable contract, and lock the initializer if the contract will only be used
through cloning.

Status

Fixed according to recommendations at commit
98f3589b012b78f74b047f22d51595479790b5b7.

© 2022 Coinspect 8

OGO-11 Shadowing of state variables

Total Risk

Low

Impact
Medium

Location
OtoCoToken.sol:11-17

Fixed
✔

Likelihood
Low

Description

The mappings _balances, _allowances, and variables _name and _symbol are
defined in the base ERC20 contract and also in the OtoCoToken contract. This results in
two separate versions of the variables, with functions on the base contract using
different variables than functions in the OtoCoToken contract, even if they have the
same name. This will lead to miscalculations of the token balances and allowances.
Fortunately, the _balances and _allowances mappings are currently not used in the
OtoCoToken contract so impact is decreased.

Recommendation

Remove any variable name ambiguities between the contracts ERC20 and OtoCoToken.

Status

Fixed according to recommendations at commit
d71f7789c4fe04e890dd0724d9ecfa0d9e6790ea.

© 2022 Coinspect 9

OGO-12 Lack of parameter validation at createBatchSeries

Total Risk

Low

Impact
Medium

Location
OtoCoMaster.sol

Fixed
✔

Likelihood
Low

Description

Unlike the createSeries() function that sets the series creation timestamp from
block.timestamp, createBatchSeries() do not validate it, and the series timestamp
can be set arbitrarily to any time in the past or the future.

Additionally, createBatchSeries() also does not validate the series name against
restrictions imposed by jurisdictions. According to the documentation:

“For instance, in Wyoming Goldman Sachs LLC could not be used as a standalone
name and would have to be referred to as Goldman Sachs LLC, a Series of OtoCo LLC”

But using createBatchSeries() the contract owner can add a Series in Wyoming
that violates the naming convention.

Recommendation

Validate the creation timestamp and name of every series minted.

Status

Fixed according to recommendations at commit
d71f7789c4fe04e890dd0724d9ecfa0d9e6790ea.

© 2022 Coinspect 10

OGO-13 Jurisdiction number causes high gas usage

Total Risk

Low

Impact
Medium

Location
OtoCoMaster.sol:139

Fixed
✔

Likelihood
Low

Description

This code in createBatchSeries() updates the number of series in each jurisdiction:

for (uint8 i = 0; i < jurisdictionCount; i++){
seriesPerJurisdiction[i] = seriesPerJurisdiction[i]+seriesPerJurisdictionTemp[i];

}

Because the jurisdictionCount variable is declared uint16 and adding jurisdictions
is not limited in any way, the contract owner can add up to 65535 jurisdictions. But
before this limit is reached, the cost of updating the seriesPerJurisdiction[]

mapping in the above loop may become prohibitive as it would require over 3 million
gas to complete. Also, as you cannot remove unused jurisdictions, this is an
ever-increasing cost that the caller must pay every time it invokes the
createBatchSeries() function, even if it adds only a single series in the batch.

Recommendation

Optimize the loop to only update affected jurisdictions. Implement a lower limit for the
number of possible jurisdictions. Alternatively, add a mechanism to remove
jurisdictions that are no longer used.

Status

Gas usage optimized at commit d71f7789c4fe04e890dd0724d9ecfa0d9e6790ea.

© 2022 Coinspect 11

OGO-14 Inconsistent documentation

Total Risk

Info

Impact
-

Location
OtoCoToken.sol:21

Fixed
✔

Likelihood
-

Description

Documentation left over from an older version of the constructor does not match the
current code.

Recommendation

Update the documentation with a valid argument description.

Status

Fixed according to recommendations at commit
d71f7789c4fe04e890dd0724d9ecfa0d9e6790ea.

© 2022 Coinspect 12

OGO-15 Lack of mapping length validations in function createBatchSeries

Total Risk

Info

Impact
-

Location
OtoCoMaster.sol:116

Fixed
✔

Likelihood
-

Description

The createBatchSeries() function receives as arguments four mappings that must
be of the same length. It performs length checks on jurisdiction[], controller[]

and name[], but fails to check the length of the creation[] argument. As a
consequence the transaction reverts if the creation[] mapping length is incorrect
without returning an error message.

Recommendation

Add a require statement checks that the creation[] mapping has the same length
as the rest of the arguments.

Status

Fixed according to recommendations at commit
d71f7789c4fe04e890dd0724d9ecfa0d9e6790ea.

5. Disclaimer

The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 13

